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6,9a-Oxido-1 la, 15a-dihydroxy prosta-6,(£> 13-dienoic 
Acid Methyl Ester and 6,9a:6,lla-Dioxido-
15a-hydroxyprost-(E)-13-enoic Acid Methyl Ester. 
Two Isomeric Forms of Prostacyclin (PGI2) 

Sir: 

The isolation1 and structural characterization2 of prosta­
cyclin (PGI2, 1, R = H) coupled with the discovery of its po­
tential value in acute mycoardial ischemia3 has opened a new 
chapter of prostaglandin research.4 Prostacyclin is a rather 
unstable molecule in aqueous, acidic or neutral media, 
breaking down to 6-keto-PGF)a (2, R = H), in equilibrium 
with its lactol form.2a The isolation of 6-keto-PGF]n itself from 
various biological tissues has also been reported recently.5 

Although 2 does not appear to be as important biologically as 
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is the enol form 1, the possible regeneration of 1 from 2 would 
be nonetheless deserving of careful chemical and biological 
study. Herein we report two isomeric forms (3 and 4) of 
prostacyclin both of which were derived chemically from 6-
keto-PGFia and one of which showed a significant biological 
activity. 

Treatment of prostacyclin methyl ester (1,R = Me)2a'6 in 
methanol with a small amount of acetic acid at 25 0C for 2 h, 
addition of excess triethylamine, extraction with ether, and 
concentration afforded the crude methoxy lactol 5. The 1H 
NMR and IR spectra of 5 indicated the absence of 5,6-olefinic 
unit.7 The crude product was dissolved in hexamethylphos-
phoric triamide, and the mixture was heated at 180 0C for 14 
min to effect elimination of methanol. The product was isolated 
from this reaction simply by extraction with ether, drying, and 
removing the solvent.8 Purification of the acid-sensitive enol 
ether 3 was effected by column chromatography on silica gel 
(EtOAc-hexane-Et3N, 50:50:0.1), and the product 3 so ob­
tained as a colorless oil was >98% pure by GC analysis and 
exhibited fully consistent 1H NMR (double-resonance tech­
nique) and IR spectra.9 The same enol ether was prepared from 
6-keto-PGF]a methyl ester (2, R = Me) by an alternate se­
quence consisting of (1) trimethylsilylation by excess tri-
methylsilyldiethylamine (TMSDEA) at 25 0C for 12 h, (2) 
GC separation of the major component,10 and (3) removal of 
the remaining trimethylsilyl groups (K2CC>3-methanol, 0 0C 
for 1 h) to produce after column chromatography the pure enol 
ether 3 (44% yield from 2). 

Independent evidence for structure 3 was obtained by the 
clean hydrolysis of 3 to 6-keto-PGFia methyl ester,1' a prop­
erty paralleling that of PGI2 methyl ester.2a Furthermore, 
oxidative cleavage of the C6-Cv olefinic unit of 3 was effected 
by (1) acetylation of 3 using acetic anhydride-pyridine at 25 
0C for 18 h, (2) treatment with excess ozone in chloroform at 
—25 0C for 15 min followed by exposure to hydrogen perox­
ide-acetic acid at 50 0C for 12 h, and (3) esterification with 
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diazomethane to furnish the pentaester 6.12 

Prolonged heating of either PGI2 methyl ester or the re-
gioisomer 3 afforded a small amount of nonpolar oily product. 
It appeared to us that this component might be the internal 
ketal 4 and ought to be accessible as a major product by a 
carefully controlled reaction conditions, and an experimental 
study was undertaken. 

6-Keto-PGFiQ (2, R = Me, 0.95 g), upon treatment with 
powdered molecular sieve 4A (4 g)13 and kiesel gel (4 g)14 in 
dry methylene chloride (50 mL) with vigorous stirring at 25 
0C for 4 h followed by filtration and purification by column 
chromatography, afforded the desired ketal 4 as a principal 
product (40% yield), whose structure was apparent from 1H 
NMR and double-resonance 1H NMR experiment as well as 
IR analysis.15 Structure 4 was further confirmed by the fol­
lowing observations. (1) Hydrolysis of 4 with a mixture of 
acetic acid-water-tetrahydrofuran gave 6-keto-PGF|a methyl 
ester. (2) Exposure of 4 to AcOD-D2O-THF produced the 
6-keto-PGFiQ methyl ester with no deuterium incorporation." 
(3) Treatment of 4 with excess p-nitrobenzoyl chloride-tri-
ethylamine afforded the monobenzoate of allylic alcohol.16 (4) 
Silylation of 4 with TMSDEA gave the monotrimethylsilyl 
derivative by mass spectral assay. (5) The methoxy lactol 5 was 
produced by methanolysis of 4. Apart from being of consid­
erable interest with regard to biological activity, the ketal 4 
represents an internally protected form of 6-keto-PGFia 
methyl ester which allows a variety of useful selective trans­
formations. 

In the preliminary test, the endo-enol ether 3 shows the 
higher potency to natural PGEi in inhibiting platelet aggre­
gation and the lower to PGI2 methyl ester, while the internal 
ketal 4 was almost inactive.17 Further study of the biological 
activities of 3 and 4 are in progress and will be published in due 
course. 
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Conformational Equilibrium in the 
Backbone of Cyclic Tripeptides1 

Sir: 
NMR measurements and x-ray studies of cyclic tripeptides 

such cyclo[Pro3],
2>3 cyclo[Hyp-Pro2],

3 and cyclo[Sar3]
4 in­

dicate a C3 symmetric backbone conformation ("crown").5 

We have now synthesized the iV-benzylglycine (Bzl-Gly) 
containing cyclic tripeptides of the general structure cyclo-
[PrOx-BzI-GIy3-X] ( l ,x = 0;2x = 1;3,* = 2) with the aim 
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Figure 1. Part of the 270-MHz 1H NMR spectrum of cyclo[Pro-Pro-
Bzl-Gly] in CDCl3 (top) and Me2SO (inverted on bottom). 
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